Fwd: University PhD Disseration Defense for Ilya Fushman

Ilya Fushman ifushman at stanford.edu
Tue Jun 3 23:13:28 PDT 2008

Dear Labmembers,I'd like to invite you to attend my defense.
Please see the email below.

---------- Forwarded message ----------
From: Claire Nicholas <claireni at stanford.edu>
Date: Tue, Jun 3, 2008 at 8:02 AM
Subject: Re: University PhD Disseration Defense for Ilya Fushman
Cc: apgradstudents at lists.stanford.edu, apfaculty at lists.stanford.edu

 Department of Applied Physics
University PhD Dissertation Defense

Quantum Dots in Photonic Crystals: From Quantum Information Processing to
Single Photon Nonlinear Optics

Ilya Fushman

Research Advisor: Professor Jelena Vuckovic

5 June 2008 @4:15 p. m.
Applied Physics Building,  Room 200

Photonic crystal cavities have emerged as one of the leading technology
platforms for classical and quantum information processing with photons.
These cavities possess extremely small optical volumes and high quality
factors, which result in long photon storage times and high field
intensities inside these nano-resonators. The field intensities due to
single photons inside such resonators are significant, and allow the
exploration of light-matter interaction at the single photon level.
Furthermore, these devices are fabricated in standard high index
semiconductors, and thus benefit from existing technologies, scaling,
integration and mass production. The combination of photonic crystals with
optically active materials such as quantum dots and quantum wells offer the
possibility of exploring novel regimes of light-matter interaction and the
implementation of information processing devices.
We have recently demonstrated that the presence of a single semiconductor
quantum dot inside a photonic crystal cavity can strongly modify the
transmission of photons through the resonator. [1] Furthermore, due to the
enhancement of the electromagnetic field intensity, the nonlinear properties
of a single quantum dot can realize interactions between photon streams at
the single photon level. We have exploited this effect to demonstrate a
controlled phase shift interaction between photons, which serves as a proof
of concept for quantum logic with photons on a semiconductor chip. [2] We
have also shown that such cavities are extremely sensitive to local changes
in refractive index, and can be used to realize all-optical modulation at
high rates exceeding 20GHz, with applications to classical information
processing. [3] The speed of such modulators is limited by the free-carrier
lifetime of electron-hole pairs inside the semiconductor, which is greatly
reduced relative to the bulk value by the large surface-area to volume ratio
of photonic crystals.

[1] Controlling Cavity Reflectivity With a Single Quantum Dot, Dirk Englund,
Andrei Faraon, Ilya Fushman, Nick Stoltz, Pierre Petroff, Jelena Vuckovic,
Nature, vol. 450, number 7171, pp. 857-861 (2007)
[2] Controlled Phase Shifts with a Single Quantum Dot, Ilya Fushman, Dirk
Englund, Andrei Faraon, Nick Stoltz, Pierre Petroff, Jelena Vuckovic,
Science, vol. 320, number 5877, pp. 769-772 (2008)
[3] Ultra Fast Nonlinear Optical Tuning of Photonic Crystal Cavities, Ilya
Fushman, Edo Waks, Dirk Englund, Nick Stoltz, Pierre Petroff, and Jelena
Vuckovic, Applied Physics Letters, vol. 90, article 091118 (2007)


apgradstudents mailing list
apgradstudents at lists.stanford.edu

Ilya Fushman
Applied Physics
Stanford University
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://snf.stanford.edu/pipermail/labmembers/attachments/20080603/28e07532/attachment.html>

More information about the labmembers mailing list