High-Power High-Speed Photodiode for LIGO (LASER Interferometer Gravitational Wave Observatory)

- **Goal:**
 - Develop a 1-10W Rear-Illuminated Photodiode (at 1064nm) for Advanced LIGO
 - >90% Quantum Efficiency (QE), ≤180MHz Modulation
 - LIGO hopes to be the first instrument capable of detecting gravitational waves

- **Current Results:**
 - InGaAs/GaAs P-I-N diodes grown using MBE (Molecular Beam Epitaxy)
 - Graded buffer incorporated to isolate defects away from active PIN layers
 - Anti-Reflection Silicon Nitride coating deposited using PECVD (at SNF)
 - Ohmic Gold-based contacts deposited using evaporation (at SNF)
 - Achieved ~70% QE, ~5MHz Bandwidth

- **Future Directions:**
 - Thin GaAs substrate to obtain higher QE
 - Further lower concentration of defects in active region to improve performance

David Jackrel, Dept. of MS&E, Wonill Ha, Dept. of EE, Stanford University
Principal Investigator: Dr. James S. Harris, Stanford University
NNUN Site: Stanford University