Section 1: Chemical Product and Company Identification

Material Name: Flammable silane mixtures:
0.5% or more in argon, 0.67% or more in helium, or
1.0% or more in hydrogen or nitrogen

Chemical formula of Principal Gas: SiH₄.

Synonyms of Principal Gas: Monosilane, silicane, silicon hydride, silicon tetrahydride.

Manufacturer: Voltaix, LLC: Post Office Box 5357, North Branch, New Jersey 08876-5357 USA
Voice: 908-231-9060 or 800-VOLTAIX, Facsimile: 908-231-9063

This MSDS is Copyrighted, Voltaix, 1994. Permission is hereby granted to duplicate it, in its entirety, for distribution with these materials.

Section 2: Composition/Information on Ingredients

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS Registry Number</th>
<th>Molar (volume) concentration</th>
<th>Exposure Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silane</td>
<td>7803-62-5</td>
<td>0.5% or more</td>
<td>5 ppm TLV-TWA (ACGIH)</td>
</tr>
<tr>
<td>Argon</td>
<td>7440-37-1</td>
<td>balance</td>
<td>Simple asphyxiant</td>
</tr>
<tr>
<td>Helium</td>
<td>7440-59-7</td>
<td>balance</td>
<td>Simple asphyxiant</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>1333-74-0</td>
<td>balance</td>
<td>Simple asphyxiant</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>7727-37-9</td>
<td>balance</td>
<td>Simple asphyxiant</td>
</tr>
</tbody>
</table>

Section 3: Hazards Identification

Emergency Overview

These silane mixtures are colorless gases with a repulsive odor. Their immediate health hazards are that they may cause thermal burns. They are flammable and pyrophoric (autoigniting in air), but may form mixtures with air that do not autoignite, but are flammable or explosive. Silane is violently reactive with oxidizers and halogens.

NFPA 704 Rating (determined by Voltaix): Health 0 Fire 4 Reactivity 1 Special None

Note: Section 3 is continued on Page 2.

*0.5% or more in argon, 0.67% or more in helium, or 1.0% or more in hydrogen or nitrogen
Section 3: Hazards Identification (continued)

Potential Health Effects

Routes of Exposure: The primary route of exposure at low concentrations is inhalation. At higher concentrations, the material ignites spontaneously in air, creating a thermal burn risk, but reducing the toxic inhalation hazard.

Lengths of Exposure: Data are available for only short term exposures to pure silane. The LC50, 4 hour, rat and LC10, 4 hour, mouse are both reported to be 9600 ppm. Six rats are reported to have “survived” a six hour exposure at 1400 ppm.

Severity of Effect: Unknown, presumed to depend on concentration and duration.

Target Organs: None identified.

Type of Effect: No effect identified.

Signs and Symptoms of Exposure: Suspected to cause headache and nausea.

Medical Conditions that may be Aggravated by Exposure: None identified.

Reported Carcinogenic and Reproductive Effects: None known to Voltaix
Section 4: First Aid Measures

Inhalation
This is the primary route of exposure.

1) Remove the affected person from the gas source or contaminated area. Note: Personal Protective Equipment (PPE), including positive pressure, self contained breathing apparatus, may be required to assure the safety of the rescuer.
2) If the affected person is not breathing spontaneously, administer rescue breathing.
3) If the affected person does not have a pulse, administer CPR.
4) If medical oxygen and appropriately trained personnel are available, administer 100% oxygen to the affected person.
5) Summon an emergency ambulance. If an ambulance is not available, contact a physician, hospital, or poison control center for instruction.
6) Keep the affected person warm, comfortable, and at rest while awaiting professional medical care. Monitor the breathing and pulse continuously. Administer rescue breathing or CPR if necessary.

Skin Contact
Flush with a copious stream of water while removing contaminated clothing. Continue flushing until the professional medical assistance arrives, but for no less than fifteen minutes. Treat thermal burns by assuring that affected area is cool by flushing with cool water, then apply dry sterile dressings. If the patient is burned on the face, neck, head, or chest, assume that the airway may also have been burned and obtain professional medical assistance immediately.

Eye Contact
Flush continuously with clean water until the professional medical assistance arrives, but for no less than thirty minutes. Continuation of flushing until patient is transferred to an ophthalmologist or emergency physician is recommended.

Ingestion
Ingestion is not an observed route of exposure to gaseous hazardous materials.

Chronic Effects
None is known to Voltaix

Note to Physicians:
The reaction product of silane and air is silicon oxide (silica). Therefore, skin and eye burns should be irrigated to the extent the physician feels necessary to remove the silicon oxide to an acceptable degree. Thereafter, treatment for burns is as usual.

*0.5% or more in argon, 0.67% or more in helium, or 1.0% or more in hydrogen or nitrogen
Section 5: Fire Fighting Measures

Flammability and Explosivity

Flash Point: Not applicable, these materials are gases.

Flammability Limits in Air: Silane, 0.8% to 98%; hydrogen 4% to 75%; the other diluents are nonflammable.

Autoignition Temperature: Less than 54 °C (130 °F), these materials are pyrophoric.

Flammability Classification (per 29 CFR 1910.1200): Flammable gas.

Known or Anticipated Hazardous Products of Combustion: Silicon oxide.

Properties that may Initiate or Intensify Fire: Heating cylinder to the point of activation of the pressure relief device.

Reactions that Release Flammable Gases: High temperature decomposition of silane releases hydrogen.

Extinguishing Media

None.

Fire Fighting Instructions

The only safe way to extinguish a flammable gas fire is to stop the flow of gas. If the flow cannot be stopped, allow the entire contents of the cylinder to burn. Cool the cylinder and surroundings with water from a suitable distance. Extinguishing the fire without stopping the flow of gas may permit the formation of ignitable or explosive mixtures with air. These mixtures may propagate to a source of ignition.

Excessive pressure may develop in gas cylinders exposed to fire, which may result in explosion, regardless of the cylinder's content. Cylinders with pressure relief devices (PRD's) may release their contents through such devices if the cylinder is exposed to fire. Cylinders without PRD's have no provision for controlled release and are therefore more likely to explode if exposed to fire.

Positive pressure, self contained breathing apparatus is required for all fire fighting involving hazardous materials. Full structural fire fighting (bunker) gear is the *minimum* acceptable attire. The need for proximity, entry, and flashover protection and special protective clothing should be determined for each incident by a competent fire fighting safety professional.
Section 6: Accidental Release Measures

Containment

As these materials are gases at atmospheric conditions, the only means of containment is the enclosure of the space into which the materials are released. Such containment is described in Section 7.

Clean Up

Clean up consists of passing the entire gas volume of the enclosure through appropriate exhaust gas treatment equipment (EGTE). Purge the enclosure with a non-reactive gas, such as nitrogen, through the EGTE until an acceptably low level of contamination remains. Equipment contaminated by these materials must then be cleaned or decommissioned appropriately.

Evacuation

If the release is not contained in an appropriate device or system, all personnel not appropriately protected (see Section 8) must evacuate the contaminated spaces. Consider evacuation of additional areas, as a precaution against the spread of the release or subsequent explosion or fire.

Special Instructions

Most, but not all, releases of these silane mixtures into air will autoignite, producing silicon oxide, a white powder that may be suspended in the air if produced in this manner. As not all leaks will autoignite, consider the formation of ignitable or explosive mixtures with air.

Section 7: Handling and Storage

Handling

Handle these materials only in sealed, purged systems. The design of handling systems for hazardous materials is beyond the scope of this MSDS, and should be performed by a competent, experienced professional. Consider the use of doubly-contained piping; diaphragm or bellows sealed, soft seat valves; backflow prevention devices; flash arrestors and flow monitoring or limiting devices. Gas cabinets, with appropriate exhaust treatment, are recommended, as is automatic monitoring of the secondary enclosures and work areas for release.

Handle sealed gas cylinders in accordance with CGA P-1, Safe Handling of Compressed Gases in Containers.

Some material may have accumulated behind the outlet plug. Face the outlet away from you and wear appropriate protective equipment when removing the plug to connect the cylinder to your system.

Never introduce any substance into a gas cylinder. If you believe your cylinder may have been contaminated, notify Voltaix immediately. Provide as much information as possible on the nature and quantity of contamination.

Storage

Store cylinders in accordance with CGA P-1, Safe Handling of Compressed Gases in Containers, local building and fire codes and other relevant regulations. Materials should be segregated by the hazards they comprise for storage.

Protect the cylinders from direct sunlight, precipitation, mechanical damage, and temperatures above 55 °C (130 °F).

Ship and store cylinders with the outlet plug and valve protective cap in place.

*0.5% or more in argon, 0.67% or more in helium, or 1.0% or more in hydrogen or nitrogen
Section 8: Exposure Control/Personal Protection

Engineering Controls

Local exhaust is required. Secondary containment, with appropriate exhaust gas treatment, is strongly encouraged and is required in some jurisdictions.

Monitor the work area and the secondary containment continuously for release of the material. Automatic alerting of personnel and automatic shutdown of flow are appropriate in most applications and are required in some jurisdictions.

Purge all primary containment systems with a nonreactive gas, such as nitrogen, before introducing silane.

Personal Protective Equipment (PPE)

Respiratory Protection: Positive pressure, full face, air supplied breathing apparatus should be used for work within the secondary containment equipment if a leak is suspected or the primary containment is to be opened, e.g., for a cylinder change. Air supplied breathing apparatus is required for response to demonstrated or suspected releases from the primary containment.

Eye/Face Protection: When using respiratory protection as described above, use a face mask that provides splash and impact protection for the face and eyes. For handling sealed cylinders, wear safety glasses.

Skin Protection: Wear appropriate gloves when handling sealed cylinders. Use gloves and other skin protection, as assigned by a competent safety professional, when working within the secondary enclosure with the primary enclosure compromised, e.g., cylinder changing, to protect both from exposure to the material and from fire that may result from its release to the air.

Other Protection: Wear appropriate protective footwear when moving cylinders.

Exposure Guidelines for Silane (The diluents are simple asphyxiants.)

TLV-TWA: 5 ppm (ACGIH).
PEL-TWA: 5 ppm (7 mg/m³) (OSHA).
TWA (10 hour): 5 ppm (NIOSH).

Section 9: Physical and Chemical Properties

Notes: 1) "N/A" means not applicable.
2) Unless otherwise specified, properties are reported at 0 ºC (32 ºF) and 1 atmosphere (1.0 bar, 14.7 psia).

<table>
<thead>
<tr>
<th>Property</th>
<th>Silane</th>
<th>Argon</th>
<th>Helium</th>
<th>Hydrogen</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>colorless</td>
<td>colorless</td>
<td>colorless</td>
<td>colorless</td>
<td>colorless</td>
</tr>
<tr>
<td>Odor</td>
<td>repulsive</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Physical state</td>
<td>gas</td>
<td>gas</td>
<td>gas</td>
<td>gas</td>
<td>gas</td>
</tr>
<tr>
<td>pH</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vapor Pressure</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Vapor Density</td>
<td>1.342 g/L</td>
<td>1.78 g/L</td>
<td>0.18 g/L</td>
<td>0.082 g/L</td>
<td>1.146 g/L</td>
</tr>
<tr>
<td>Boiling point</td>
<td>-111.5 ºC (-168.7 ºF)</td>
<td>-122.4 ºC (-188 ºF)</td>
<td>-268.9 ºC (-458 ºF)</td>
<td>-252.9 ºC (-423 ºF)</td>
<td>-195.8 ºC (-320 ºF)</td>
</tr>
<tr>
<td>Melting point</td>
<td>-185 ºC (-301 ºF)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Solubility in water (v/v)</td>
<td>Unknown</td>
<td>0.0337</td>
<td>0.0086</td>
<td>0.0182</td>
<td>0.0149</td>
</tr>
<tr>
<td>Specific gravity (liquid)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Molecular weight</td>
<td>32.12</td>
<td>39.95</td>
<td>4</td>
<td>2.02</td>
<td>28.01</td>
</tr>
</tbody>
</table>

*0.5% or more in argon, 0.67% or more in helium, or 1.0% or more in hydrogen or nitrogen
Section 10: Stability and Reactivity

Chemical Stability: All of the components are stable at room temperature and atmospheric pressure.

Conditions to Avoid: Sources of ignition, exposure to air.

Incompatibility with Other Materials: Oxidizers, halogens,

Hazardous Decomposition, Reaction and Oxidation (other than burning) Products: Silicon oxide, hydrogen.

Hazardous Polymerization: Has not been observed.

Section 11: Toxicological Information For Pure Silane

Acute Data (by route): Exposure by inhalation may cause headache or nausea. Reaction with air may produce irritation or thermal burns to skin, eyes and mucous membranes. LC$_{50}$, 4-hour, rat 9600 ppm.

Chronic and Subchronic Data: Silane is listed in RTECS, but no information on its carcinogenicity is included.

Special Studies: None known.

ACGIH recommends at TLV-TWA of 5 ppm for silane.

Section 12: Ecological Information

Ecotoxicity: None known to Voltaix

Environmental Fate: None known to Voltaix

Section 13: Disposal Considerations

Classification under RCRA, 40 CFR 261: These materials are not listed.

US EPA waste number and descriptions: D001 (ignitability).

Special Instructions and Limitations: Treat process and other exhaust streams appropriately before release to the atmosphere.

Notice: The information above is derived from Voltaix's interpretation of the US federal laws, regulations and policies concerning the material, as shipped by Voltaix, at the time this MSDS was prepared. Federal controls are subject to change and state and local controls may also apply. Proper waste disposal is the responsibility of the owner of the waste. The user is encouraged to consult with appropriate experts in developing a disposal plan.

Section 14: Transport Information

Basic Description: Compressed Gas, Flammable, n.o.s. (Silane x% in diluent), Division 2.1 (Flammable Gas), UN 1954.

Note: Substitute the proper shipping name of the diluent for diluent and the concentration for x%.

Additional Information for shipment by water: IMDG Page Number 2124.

Additional Information for shipment by air: Transportation by air is not permitted.

0.5% or more in argon, 0.67% or more in helium, or 1.0% or more in hydrogen or nitrogen
Section 15: Regulatory Information

TSCA Status: The components are listed on the Inventory of Chemical Substances.

CERCLA Reportable Quantity (40CFR302.40): These materials are not listed. The Reportable Quantity (RQ) for “Unlisted Hazardous Wastes Characteristic of Ignitability” (D001) of 45.4 kg (100 lbs.) therefore applies.

SARA Title III Status (Section 302 (40CFR355), Section 311/312, Section 313 (40CFR372)): No Threshold Planning Quantities (TPQ’s) or Reportable Quantities (RQ’s) are listed for these substances. The default federal MSDS submission and inventory requirement filing threshold of 4,540 kg (10,000 lbs.) therefore applies. Note: State and local requirements may be more stringent.

Section 16: Other Information

References

Technical Databook of Silanes (SiH₄, Si₂H₆ and SiF₄). Tokyo: Mitsui-Toatsu Chemicals, Inc.

Derivation of this information

The information in this MSDS was obtained by estimating or calculating the characteristics of mixtures based on the characteristics and concentrations of their components. Mixtures of a range of compositions and any of several diluents have similar characteristics. A single MSDS is therefore provided for them as a group.

Revision Indication

Revise to reflect company name change

Disclaimer

Voltaix cannot guarantee that these are the only hazards that exist. Users are solely responsible for the safe storage, handling, use and disposal of these materials, and for compliance with the applicable laws, regulations and accepted practices.

Voltaix makes no representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose, or any other nature.

*0.5% or more in argon, 0.67% or more in helium, or 1.0% or more in hydrogen or nitrogen